Left Termination of the query pattern
plus_in_3(g, a, a)
w.r.t. the given Prolog program could successfully be proven:
↳ Prolog
↳ PrologToPiTRSProof
Clauses:
p(s(X), X).
plus(0, Y, Y).
plus(s(X), Y, s(Z)) :- ','(p(s(X), U), plus(U, Y, Z)).
Queries:
plus(g,a,a).
We use the technique of [30].Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
plus_in(s(X), Y, s(Z)) → U1(X, Y, Z, p_in(s(X), U))
p_in(s(X), X) → p_out(s(X), X)
U1(X, Y, Z, p_out(s(X), U)) → U2(X, Y, Z, U, plus_in(U, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U2(X, Y, Z, U, plus_out(U, Y, Z)) → plus_out(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in(x1, x2, x3) = plus_in(x1)
s(x1) = s(x1)
U1(x1, x2, x3, x4) = U1(x4)
p_in(x1, x2) = p_in(x1)
p_out(x1, x2) = p_out(x2)
U2(x1, x2, x3, x4, x5) = U2(x5)
0 = 0
plus_out(x1, x2, x3) = plus_out
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
plus_in(s(X), Y, s(Z)) → U1(X, Y, Z, p_in(s(X), U))
p_in(s(X), X) → p_out(s(X), X)
U1(X, Y, Z, p_out(s(X), U)) → U2(X, Y, Z, U, plus_in(U, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U2(X, Y, Z, U, plus_out(U, Y, Z)) → plus_out(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in(x1, x2, x3) = plus_in(x1)
s(x1) = s(x1)
U1(x1, x2, x3, x4) = U1(x4)
p_in(x1, x2) = p_in(x1)
p_out(x1, x2) = p_out(x2)
U2(x1, x2, x3, x4, x5) = U2(x5)
0 = 0
plus_out(x1, x2, x3) = plus_out
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN(s(X), Y, s(Z)) → U11(X, Y, Z, p_in(s(X), U))
PLUS_IN(s(X), Y, s(Z)) → P_IN(s(X), U)
U11(X, Y, Z, p_out(s(X), U)) → U21(X, Y, Z, U, plus_in(U, Y, Z))
U11(X, Y, Z, p_out(s(X), U)) → PLUS_IN(U, Y, Z)
The TRS R consists of the following rules:
plus_in(s(X), Y, s(Z)) → U1(X, Y, Z, p_in(s(X), U))
p_in(s(X), X) → p_out(s(X), X)
U1(X, Y, Z, p_out(s(X), U)) → U2(X, Y, Z, U, plus_in(U, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U2(X, Y, Z, U, plus_out(U, Y, Z)) → plus_out(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in(x1, x2, x3) = plus_in(x1)
s(x1) = s(x1)
U1(x1, x2, x3, x4) = U1(x4)
p_in(x1, x2) = p_in(x1)
p_out(x1, x2) = p_out(x2)
U2(x1, x2, x3, x4, x5) = U2(x5)
0 = 0
plus_out(x1, x2, x3) = plus_out
P_IN(x1, x2) = P_IN(x1)
U21(x1, x2, x3, x4, x5) = U21(x5)
PLUS_IN(x1, x2, x3) = PLUS_IN(x1)
U11(x1, x2, x3, x4) = U11(x4)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN(s(X), Y, s(Z)) → U11(X, Y, Z, p_in(s(X), U))
PLUS_IN(s(X), Y, s(Z)) → P_IN(s(X), U)
U11(X, Y, Z, p_out(s(X), U)) → U21(X, Y, Z, U, plus_in(U, Y, Z))
U11(X, Y, Z, p_out(s(X), U)) → PLUS_IN(U, Y, Z)
The TRS R consists of the following rules:
plus_in(s(X), Y, s(Z)) → U1(X, Y, Z, p_in(s(X), U))
p_in(s(X), X) → p_out(s(X), X)
U1(X, Y, Z, p_out(s(X), U)) → U2(X, Y, Z, U, plus_in(U, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U2(X, Y, Z, U, plus_out(U, Y, Z)) → plus_out(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in(x1, x2, x3) = plus_in(x1)
s(x1) = s(x1)
U1(x1, x2, x3, x4) = U1(x4)
p_in(x1, x2) = p_in(x1)
p_out(x1, x2) = p_out(x2)
U2(x1, x2, x3, x4, x5) = U2(x5)
0 = 0
plus_out(x1, x2, x3) = plus_out
P_IN(x1, x2) = P_IN(x1)
U21(x1, x2, x3, x4, x5) = U21(x5)
PLUS_IN(x1, x2, x3) = PLUS_IN(x1)
U11(x1, x2, x3, x4) = U11(x4)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 2 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN(s(X), Y, s(Z)) → U11(X, Y, Z, p_in(s(X), U))
U11(X, Y, Z, p_out(s(X), U)) → PLUS_IN(U, Y, Z)
The TRS R consists of the following rules:
plus_in(s(X), Y, s(Z)) → U1(X, Y, Z, p_in(s(X), U))
p_in(s(X), X) → p_out(s(X), X)
U1(X, Y, Z, p_out(s(X), U)) → U2(X, Y, Z, U, plus_in(U, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U2(X, Y, Z, U, plus_out(U, Y, Z)) → plus_out(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in(x1, x2, x3) = plus_in(x1)
s(x1) = s(x1)
U1(x1, x2, x3, x4) = U1(x4)
p_in(x1, x2) = p_in(x1)
p_out(x1, x2) = p_out(x2)
U2(x1, x2, x3, x4, x5) = U2(x5)
0 = 0
plus_out(x1, x2, x3) = plus_out
PLUS_IN(x1, x2, x3) = PLUS_IN(x1)
U11(x1, x2, x3, x4) = U11(x4)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN(s(X), Y, s(Z)) → U11(X, Y, Z, p_in(s(X), U))
U11(X, Y, Z, p_out(s(X), U)) → PLUS_IN(U, Y, Z)
The TRS R consists of the following rules:
p_in(s(X), X) → p_out(s(X), X)
The argument filtering Pi contains the following mapping:
s(x1) = s(x1)
p_in(x1, x2) = p_in(x1)
p_out(x1, x2) = p_out(x2)
PLUS_IN(x1, x2, x3) = PLUS_IN(x1)
U11(x1, x2, x3, x4) = U11(x4)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
Q DP problem:
The TRS P consists of the following rules:
U11(p_out(U)) → PLUS_IN(U)
PLUS_IN(s(X)) → U11(p_in(s(X)))
The TRS R consists of the following rules:
p_in(s(X)) → p_out(X)
The set Q consists of the following terms:
p_in(x0)
We have to consider all (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
PLUS_IN(s(X)) → U11(p_in(s(X)))
Strictly oriented rules of the TRS R:
p_in(s(X)) → p_out(X)
Used ordering: POLO with Polynomial interpretation [25]:
POL(PLUS_IN(x1)) = 2 + 2·x1
POL(U11(x1)) = x1
POL(p_in(x1)) = 1 + 2·x1
POL(p_out(x1)) = 2 + 2·x1
POL(s(x1)) = 1 + 2·x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
U11(p_out(U)) → PLUS_IN(U)
R is empty.
The set Q consists of the following terms:
p_in(x0)
We have to consider all (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.